Dipole Antennas
Short Topical Videos[edit]
Reference Material[edit]
- Dipole Antenna (wikipedia)
- Antenna Gain (wikipedia)
- Radiation Pattern (wikipedia)
- Antenna Basics (antenna-theory.com)
1 Dipole Antennas
Dipole antennas are a type of radio antenna that is very common at lower frequencies, where wavelengths are long enough that such elements are reasonable to build. The performance of a dipole antenna depends on its tip-to-tip length, , as measured in units of wavelength, . Two common regimes are:
- Short ()
- Half-wave ()
The most efficient of these is the half-wave dipole, which we will consider in more detail.
1.1 Deriving Far-Field Beam Patterns
The far-field -field generated by currents flowing in an antenna can by calculated using the Fourier transform of the current density flowing in the aperture (modified by a directionality component that reflects that currents flowing in a direction emit most strongly perpendicular to that direction). And by the reciprocity theorem, the reverse is true: the Fourier transform of the beam pattern show the currents that are excited in the aperture. So when deriving the beam response of a dipole, it is important to note that current does not flow at the tips of the dipole, and that the current excited increases toward the center.
1.2 Half-wave Dipole
The formula for the -field at a distance for a half-wave dipole being driven with a current is given by:
where is the direction angle, measured from the axis of the dipole.
Half-wave dipoles have, at the wavelength that they are tuned to, a resistance of , and a gain of 2.15 dBi. This means that the peak response of the dipole beam is a factor of 1.64 higher than an (ideal) isotropic beam would have.